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Colorado
University of Colorado at Boulder

Seminar overview

Goal: To learn the basic concepts and tools of quantum information,
appreciate its power and limitations, and understand the issues involved in
realizing it.
Prerequsites: Linear algebra, polynomials, binary logic, probability.
Structure: 15 seminars, each consisting of a 50min lecture, followed by
discussions and/or problem solving.
Grading: Based on participation–see hand-out. Required meeting with me
in the second half of the semester.
Assignments: Problems to be handed out. Errors in solutions handed in
have no effect on grade.
Reading: References provided in handout, limited number of hard copies
of LAScience issue.
Office hours: CU: Wednesdays after class, 1pm-3pm, S315 or by
appointment. NIST: Thursdays after class, 2:15pm-3:15pm, Bldg 1, Rm
4049, or drop in any time I am there.
Sign-up: Please provide your email, if possible. Let me know if it is difficult
for you to use PDF and PS attachments.
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Classical Information Units

• The classical information unit is the bit.
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Classical Information Units

• The classical information unit is the bit.
The bit is a system with state space {0, 1}.

0 1

Physical examples:
Mag. domain on a hard disk, state of mag. moment.
0 is “right”, 1 is “left” magnetization.

Location on a piece of paper, ink pattern.
0 if it looks like 0 , 1 if it looks like 1 .

• Multiple units’ state space: By concatenation of states.
Two bits’ state space: {00, 01, 10, 11}.
How many states do n bits have? Answer: 2n.
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• A one-bit network.
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• A one-bit network.

0 0

Time
Prepare in state 0.

0

Flip 0→ 1, 1→ 0.
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Reset to 0.

0

• A three-bit network.

0

0

0

000 100

Controlled-not
{

00→ 00, 01→ 01,
10→ 11, 11→ 10.

110

Nand
{

00→ 01
01→ 01,
10→ 11
11→ 10.
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for k = 1 to v
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Classical Programming

x← 0

for k = 1 to v

x← x+ k

if x > 2k then

x→ floor (sqrt (x))

...

CPU

Memory
Program

Random access
machine︷ ︸︸ ︷



4
←|Top|→|�|TOC

Classical Programming

x← 0

for k = 1 to v

x← x+ k

if x > 2k then

x→ floor (sqrt (x))

...

CPU

Memory
Program

Random access
machine︷ ︸︸ ︷

Capabilities added:
...
• Loops, iteration,

recursion.

Universality:
• Anything

“effective”
can be computed
by a RAM.
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Guide to Information Processing

Information
unit (IU)

Combining IUs

One IU
control

Multi IU
control

Information type

Deterministic

Probabilistic

Quantum

read outbi
t

p-
bi

t

qu
bi

t

bit strings

p-bitsqubits

not, reset, . . . na
nd

, .
. .

. . . , coin-flip nand, . . .

rotations c-n
ot,. .

.

Iteration

Programming
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Quantum Information Science

CommunicationComputation

Complexity

Quantum physics

Classical physics

Control

• Motivation.
Quantum cryptography. Quantum physics simulation.
Quantum factoring. Unstructured search.

. . . Quantum control, complexity theory, . . .
• Practical relevance.
• QIP is physically realizable in principle:
Accuracy Threshold Theorem: If the error rate is sufficiently low,
then it is possible to efficiently process quantum information
arbitrarily accurately.
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The Quantum Bit

• The qubit : A system with (pure) state space all
superpositions of two logical states 0〉 and 1〉:

{ α 0〉+ β 1〉 with |α|2 + |β|2 = 1 }
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The Quantum Bit

• The qubit : A system with (pure) state space all
superpositions of two logical states 0〉 and 1〉:

{ α 0〉+ β 1〉 with |α|2 + |β|2 = 1 }

• Examples: 0〉, 1〉,
1√
2
0〉+ 1√

2
1〉,

1√
2
0〉+ i√

2
1〉,

3
5 0〉+ 4

5 1〉.

The ket :

ψ 〉
ψ ∈ CN

system
delimiter

system
delimiter

︸ ︷︷ ︸
state symbol

For example: ψ〉 = 3
5 0〉+ 4i

5 1〉
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• Vectors.

α 0〉+ β 1〉 ↔
(
α

β

)
• Bloch sphere.

θ

φ

z

x
y

α 0〉+ β 1〉 ∼= e−iφ/2 cos(θ/2) 0〉+ eiφ/2 sin(θ/2) 1〉
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State Space Representations

• Vectors.

α 0〉+ β 1〉 ↔
(
α

β

)
• Bloch sphere.

θ

φ

z

x
y

α 0〉+ β 1〉 ∼= e−iφ/2 cos(θ/2) 0〉+ eiφ/2 sin(θ/2) 1〉
Global phase:
α 0〉+ β 1〉 and eiϕα 0〉+ eiϕβ 1〉 are the same state.
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modes.
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Spin 1/2 Qubit

• Spin 1/2 in oriented space: One particle in a superposition
of the states “up” ( ↑〉) and “down” ( ↓〉).
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One-Qubit Gates I

• State preparation, prep(0),prep(1).

0 0〉 1 1〉

• Bit flip, not.
α 0〉+ β 1〉(
α

β

) 

α 1〉+ β 0〉(

0 1
1 0

) (
α

β

)
=

(
β

α

)
• Sign flip, sgn.

Z

α 0〉+ β 1〉(
α

β

) 

α 0〉 − β 1〉(

1 0
0 −1

) (
α

β

)
=

(
α

−β
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One-Qubit Gates I

• State preparation, prep(0),prep(1).

0 0〉 1 1〉

• Bit flip, not.
α 0〉+ β 1〉(
α

β

) 

α 1〉+ β 0〉(

0 1
1 0

) (
α

β

)
=

(
β

α

)
• Sign flip, sgn.

Z

α 0〉+ β 1〉(
α

β

) 

α 0〉 − β 1〉(

1 0
0 −1

) (
α

β

)
=

(
α

−β

)
So far: Cannot generate proper superpositions.
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One-Qubit Gates II

• Hadamard.

H
(
α

β

) 
 1√

2

(
1 1
1 −1

) (
α

β

)
= 1√

2

(
α+ β

α− β

)
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One-Qubit Gates II

• Hadamard.

H

α 0〉+ β 1〉(
α

β

) 


1√
2
(α+ β) 0〉+ 1√

2
(α− β) 1〉

1√
2

(
1 1
1 −1

) (
α

β

)
= 1√

2

(
α+ β

α− β

)
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One-Qubit Gates II

• Hadamard.

H

α 0〉+ β 1〉(
α

β

) 


1√
2
(α+ β) 0〉+ 1√

2
(α− β) 1〉

1√
2

(
1 1
1 −1

) (
α

β

)
= 1√

2

(
α+ β

α− β

)
• Example: Prepare the state 1√

2
( 0〉+ 1〉).

0
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One-Qubit Gates II

• Hadamard.

H

α 0〉+ β 1〉(
α

β

) 


1√
2
(α+ β) 0〉+ 1√

2
(α− β) 1〉

1√
2

(
1 1
1 −1

) (
α

β

)
= 1√

2

(
α+ β

α− β

)
• Example: Prepare the state 1√

2
( 0〉+ 1〉).

0

0〉
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One-Qubit Gates II

• Hadamard.

H

α 0〉+ β 1〉(
α

β

) 


1√
2
(α+ β) 0〉+ 1√

2
(α− β) 1〉

1√
2

(
1 1
1 −1

) (
α

β

)
= 1√

2

(
α+ β

α− β

)
• Example: Prepare the state 1√

2
( 0〉+ 1〉).

0

0〉
H
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One-Qubit Gates II

• Hadamard.

H

α 0〉+ β 1〉(
α

β

) 


1√
2
(α+ β) 0〉+ 1√

2
(α− β) 1〉

1√
2

(
1 1
1 −1

) (
α

β

)
= 1√

2

(
α+ β

α− β

)
• Example: Prepare the state 1√

2
( 0〉+ 1〉).

0

0〉
H

1√
2
( 0〉+ 1〉)
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One-Qubit Gates II

• Hadamard.

H

α 0〉+ β 1〉(
α

β

) 


1√
2
(α+ β) 0〉+ 1√

2
(α− β) 1〉

1√
2

(
1 1
1 −1

) (
α

β

)
= 1√

2

(
α+ β

α− β

)
• Example: Prepare the state 1√

2
( 0〉+ 1〉).

0

0〉
H

1√
2
( 0〉+ 1〉)

prep(0) . had
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One-Qubit Gates II

• Hadamard.

H

α 0〉+ β 1〉(
α

β

) 


1√
2
(α+ β) 0〉+ 1√

2
(α− β) 1〉

1√
2

(
1 1
1 −1

) (
α

β

)
= 1√

2

(
α+ β

α− β

)
• Example: Prepare the state 1√

2
( 0〉+ 1〉).

0

0〉
H

1√
2
( 0〉+ 1〉)

prep(0) . had

• With the gates so far, can we prepare 1√
2
( 0〉+ i 1〉)?
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Read-out

• Read-out reduces a state destructively to classical
information.

b0/1
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Read-out

• Read-out reduces a state destructively to classical
information.

b0/10〉
{

b = 0
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Read-out

• Read-out reduces a state destructively to classical
information.

b0/11〉
{

b = 1
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Read-out

• Read-out reduces a state destructively to classical
information.

b0/1α 0〉+ β 1〉
{

b = 0 with probability |α|2,
b = 1 with probability |β|2.
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Read-out

• Read-out reduces a state destructively to classical
information.

b0/1α 0〉+ β 1〉
{

b = 0 with probability |α|2,
b = 1 with probability |β|2.

• Example:

H b0/10



13
←|Top|Bot|→|�|TOC

Read-out

• Read-out reduces a state destructively to classical
information.

b0/1α 0〉+ β 1〉
{

b = 0 with probability |α|2,
b = 1 with probability |β|2.

• Example:

H b0/10

1√
2
0〉+ 1√

2
1〉
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Read-out

• Read-out reduces a state destructively to classical
information.

b0/1α 0〉+ β 1〉
{

b = 0 with probability |α|2,
b = 1 with probability |β|2.

• Example:

H b0/10

1√
2
0〉+ 1√

2
1〉

 0 with probability
(

1√
2

)2

= .5,

1 with probability
(

1√
2

)2

= .5.
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Read-out

• Read-out reduces a state destructively to classical
information.

b0/1α 0〉+ β 1〉
{

b = 0 with probability |α|2,
b = 1 with probability |β|2.

• Example:

H b0/10

1√
2
0〉+ 1√

2
1〉

 0 with probability
(

1√
2

)2

= .5,

1 with probability
(

1√
2

)2

= .5.

prep(0) . had . meas(Z 7→b)
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“Black Box” Problems

Classical:

• Given: Unknown one-bit device, a “black box”.
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• Given: Unknown one-bit device, a “black box”.
Promise: It either flips the bit or does nothing.
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Classical:

• Given: Unknown one-bit device, a “black box”.
Promise: It either flips the bit or does nothing.
Problem: Determine which using the device once.
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“Black Box” Problems

Classical:

• Given: Unknown one-bit device, a “black box”.
Promise: It either flips the bit or does nothing.
Problem: Determine which using the device once.

Solution:
0
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“Black Box” Problems

Classical:

• Given: Unknown one-bit device, a “black box”.
Promise: It either flips the bit or does nothing.
Problem: Determine which using the device once.

Solution:
0

{
0 : doesn’t flip,
1 : flips.
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“Black Box” Problems

Quantum:
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
0〉 {

1l :
sgn :
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
0〉 {

1l : 0〉
sgn : 0〉
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1〉 {

1l :
sgn :
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1〉 {

1l : 1〉
sgn : − 1〉
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1√
2
( 0〉+ 1〉) {

1l :
sgn :
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1√
2
( 0〉+ 1〉) {

1l : 1√
2
( 0〉+ 1〉)

sgn : 1√
2
( 0〉 − 1〉)



15
←|Top|Bot|→|�|TOC

“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1√
2
( 0〉+ 1〉) {

1l : 1√
2
( 0〉+ 1〉)

sgn : 1√
2
( 0〉 − 1〉)

b0/1?



15
←|Top|Bot|→|�|TOC

“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1√
2
( 0〉+ 1〉) {

1l : 1√
2
( 0〉+ 1〉)

sgn : 1√
2
( 0〉 − 1〉)

b0/1H

1√
2

(
1 1
1 −1

)
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1√
2
( 0〉+ 1〉) b0/1H

1√
2

(
1 1
1 −1

)

{
1l : 0〉
sgn : 1〉
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1√
2
( 0〉+ 1〉) b0/1H

1√
2

(
1 1
1 −1

)

{
1l : 0〉
sgn : 1〉

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies not, sgn, sgn.not

or does nothing.
Problem: Determine which using the device once.
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“Black Box” Problems

Quantum:

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:
1√
2
( 0〉+ 1〉) b0/1H

1√
2

(
1 1
1 −1

)

{
1l : 0〉
sgn : 1〉

• Given: Unknown one-qubit device, a “black box”.
Promise: It either applies not, sgn, sgn.not

or does nothing.
Problem: Determine which using the device once.

Is this possible?
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